Global Asymptotic Stability of the Classical PID Controller by Considering Saturation Effects in Industrial Robots

نویسندگان

  • Antonio Yarza
  • Victor Santibanez
  • Javier Moreno-Valenzuela
چکیده

An unsolved ancient problem in position control of robot manipulators is to find a stability analysis that proves global asymptotic stability of the classical PID control in closed loop with robot manipulators. The practical evidence suggests that in fact the classical PID in industrial robots is a global regulator. The main goal of the present paper is theoretically to show why in the practice such a fact is achieved. We show that considering the natural saturations of every control stage in practical robots, the classical PID becomes a type of saturated nonlinear PID controller. In this work such a nonlinear PID controller with bounded torques for robot manipulators is proposed. This controller, unlike other saturated nonlinear PID controllers previously proposed, uses a single saturation for the three terms of the controller. Global asymptotical stability is proved via Lyapunov stability theory. Experimental results are presented in order to observe the performance of the proposed controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Practical PID Regulator with Bounded Torques for Robot Manipulators

This paper proposes a saturated nonlinear PID regulator for industrial robot manipulators. Our controller considers the natural saturation problem given by the output of the control computer, the saturation phenomena of the internal PI velocity controller in the servo driver, and the actuator torque constraints of the robot manipulator. An approach based on the singular perturbations method is ...

متن کامل

On Saturated PID Controllers for Industrial Robots: The PA10 Robot Arm as Case of Study

Industrial robots are naturally equipped with classical PID controllers, which theoretically assure semi–global asymptotic stability of the closed–loop system equilibrium for the regulation case (see, e.g., Arimoto & Miyazaki (1984), Arimoto et al., (1990), Kelly (1995b), Ortega et al., (1995), Alvarez-Ramirez et al., (2000), Kelly et al., (2005), Meza et al., (2007)). Uniform ultimate boundedn...

متن کامل

Stability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables

In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...

متن کامل

Optimization of PID Controller with Supervisory Fuzzy Control for Industrial Robots

It is difficult to control the movement of the robot arm due to its nonlinear structure. PID controller is still in the world because of its simplicity in designing this controller as the main controller. The nonlinear control technique is very complicated, and this is not very interesting in the controller. While fuzzy control has a better performance, it incorporates a fuzzy control with ...

متن کامل

Analysis via Passivity Theory of a Class of Nonlinear PID Global Regulators for Robot Manipulators

We present a simple global asymptotic stability analysis, by using passivity theory for a class of nonlinear PID regulators for robot manipulators. Nonlinear control structures based on the classical PID controller, which assure global asymptotic stability of the closed-loop system, have emerged. Some works that deal with global nonlinear PID regulators based on Lyapunov theory have been report...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011